Chiral Quirkonium Decays

Ricky Fok University of Oregon/Fermilab

SUSY 2011 08/30/2011

R. Fok, G. Kribs Phys. Rev. D 84, 035001 (2011)

What are quirks?

"Quarks" confined under infra-color

$$m_Q >> \Lambda_{IC}$$

No fragmantation! Why?

Flux tube energy over length L, $>2m_{\mathcal{Q}}$

$$\Lambda_{IC}^2L > 2m_Q$$

Infra-color flux tube

compton wavelength,

$$L \sim (m_O)^{-1}$$

$$\Lambda_{IC}^2 > 2mQ^2$$

Infra-color strings can't break!

Rich collider phenomenology

Ground state

Produced in a highly excited state

Very optimistic scenario

Annihilation into observable high p_T signals

Vectorlike quirkonium annihilation studies

K. Cheung, W. -Y. Keung, T. -C. Yuan, Nucl. Phys. B811, 274-287 (2009)

C. Kilic, T. Okui, JHEP 1004, 128 (2010)

S. P. Martin, Phys. Rev. D83, 035019 (2011)

R. Harnik, G. Kribs, A. Martin, arXiv:1106.2569 (2011)

and so on.....

Not many chiral quirkonium decay studies in the market!

Physical motivation for chiral quirks

Quirky baryons can be a dark matter candidate

Kribs, Roy, Terning, Zurek, Phys. Rev. D81, 095001 (2010)

		$SU(N)_{ic}$	$SU(2)_L$	$U(1)_Y$
	$\rightarrow \overline{Q}$	N	2	0
Mass	$\longrightarrow u^c$	$ar{\mathbf{N}}$	1	-1/2
degenerate	$\longrightarrow d^c$	$ar{\mathbf{N}}$	1	+1/2
		$SU(2)_{ic}$		•

Yukawa coupling

$$\mathcal{L} = \lambda_U Q H u^c + \lambda_d Q H^{\dagger} d^c$$

Outline

- Meson states
- Matrix element calculation
- Enhancement factors
- Decay branching ratios

Two quirk flavors, U and D

Neutral quirkonia

$$U\overline{U}$$
 $D\overline{D}$

Charged quirkonia

$$U\bar{D}$$
 $D\bar{U}$

Lowest lying angular momentum states

Decay Matrix Element

$$iM = \langle XX|O|B\rangle$$

Decompose
$$|B\rangle = |^{2s+1}l_j\rangle$$
 into $|lmss_z\rangle$
Then $|lmss_z\rangle$ into $|p_1p_2;s_1s_2\rangle$

$$iM \sim \langle XX|O|p_1p_2;s_1s_2\rangle$$

 $f\overline{f} \rightarrow XX$ matrix element!

B. Guberina, J. H. Kuhn, R. D. Peccei and R. Ruckl, Nucl. Phys. B 174, 317 (1980).

Yukawa and Longitudinal W/Z enhancements

Absent in vector-like quirks!!

Branching Ratios Parameters

$$\Lambda_{IC} \sim O(1 \; GeV)$$

$$\alpha_{IC} = 0.2$$

Kinemetically suppresses IC radiative relaxation from P to S states

IC is perturbative, Coulomb approx. to wavefunction

For neutral quirkonia, decays into infra-glueballs is Λ_{IC} dependent, calculate width ratios instead for plots

$$WR(Q\bar{Q} \to f) = \frac{\Gamma(Q\bar{Q} \to f)}{\sum_{f \neq \phi' \phi'} \Gamma(Q\bar{Q} \to f)}$$

See our paper for a detailed discussion on how these parameters affect our results.

 $U\overline{D}$

 $U\overline{D}$

Electrically Charged! No glueballs!

$$m_H = 125, 250 \text{ GeV}$$

$$\alpha_{IC} = 0.2$$

Plots $U\bar{D}$ $U\bar{D}$

WH dominates over radiative transition at $m_Q > 600 \text{ GeV}$.

Doubly enhanced!

Plots $U\bar{U}$ $D\bar{D}$

 $^{3}P_{0}$

Plots $U\bar{U}$ $D\bar{D}$

Conclusion and outlook

- It is necessary to consider P states for chiral quirks for $m_Q > 500~GeV$.
- Dominant modes are mostly combinations of W/Z and H, when kinematically allowed.
- 8 lepton(!!!!) signal from $HH \rightarrow ZZZZ$ $\rightarrow lllllll$ for heavier Higgs masses

Which decay channels are enhanced?

Look at J^{PC} of final states!

e.g.
$$Z\gamma$$

Which decay channels are enhanced?

Look at J^{PC} of final states! e.g. $Z\gamma$

Which decay channels are enhanced?

Look at J^{PC} of final states! e.g. $Z\gamma$

Enhanced
$3S_1$
 1P_1
Enhanced 1S_0 3P_0 3P_1 3P_2

Vector-like quirkonium decays

Vector-like quirkonium decays

$$|B\rangle = |^{2s+1}l_{j}\rangle = \sum_{MS_{z}} \langle lmss_{z}|jj_{z}\rangle |lmss_{z}\rangle$$

$$= \sqrt{\frac{2}{M}} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} \psi^{lm}(\mathbf{q}) \left[\sum_{ms_{z}} \langle lmss_{z}|jj_{z}\rangle \right]$$

$$\left[\sum_{s_{1}s_{2}} \langle s_{1}, \frac{1}{2}, s_{2}, \frac{1}{2}|ss_{z}\rangle \right] |s_{1}p_{1}s_{2}p_{2}\rangle,$$